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PROPAGATION OF TRANSIENT, CYLINDRICAL WAVES IN
AN INFINITE, VISCOELASTIC BODY

H. D. McNlVENt and Y. MENGIt

University of California, Berkeley, California 94720

Abstnct-This study involves a linear viscoelastic body of infinite extent through which runs a cylindrical hole
ofcircular section. The object of the study is to find the response ofthe body to a uniform pressure, applied to the
wall of the hole, which has an arbitrary dependence on time. The method of characteristics is chosen for the
solution and responses are found at two separate stations for three different viscoelastic materials. When the
responses can be compared with those ofothers, they appear to be correct, and when they cannot, dIey are qualita­
tively what one would expect from intuition.

1. INTRODUCTION

THE problem under study involves a body of infinite extent through which runs an infinitely
long cylindrical hole of circular cross section. The material of the body is viscoelastic
which is modeled in the study as a standard solid. The problem is that offinding the response
in the body to a uniform pressure against the surface of the hole that has an arbitrary
dependence on time.

We choose to solve the problem using the method of characteristics. The choice seems
suitable for several reasons. The problem is one of plane strain with axisymmetry which
means that the response is dependent only on the radial space variable and time. Further,
the governing equations are hyperbolic. The method of characteristics accommodates a
variety of initial and boundary conditions so long as dependence on only two independent
variables in the problem is maintained. From our experience we feel that numerical results
are easier to obtain using the method of characteristics than by transform techniques.

Using the method of characteristics the governing differential equations are reduced to
two different forms. The first is the decay equation which can be integrated directly to find the
behavior along the wave front. The behavior behind the wave front is found by reducing the
equations to their canonical form. In this form they can be integrated only along character­
istic lines but the canonical form is simple and lends itself to integration by finite differences.

A somewhat similar problem has been solved by Lubliner [1]. However, it is different
enough that comparison of our results with those of Lubliner is not valid. Whereas in both
studies the material is modelled as a standard solid, Lubliner found the response at large
distances from excitation whereas our response is found close to the source.

The studies that prove to be most useful for comparison are due to Kromm [2,3].
Kromm found the response in an infinite elastic plate to an input on the surface of a single
circular hole in the plate. The input was either a uniform radial velocity or a uniform pressure
each with a step distribution in. time. Using a transform technique he obtained numerical
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results. As the theory of viscoelasticity contains the theory of elasticity as a special case, our
solution is easily adapted for the elastic case. As Kromm's problem is one of generalized
plane stress and ours is plane strain, it is necessary for comparison to take Kromm's elastic
constants and from them find "equivalent" constants for plane strain. Using these elastic
constants we find the response numerically and compare it to that found by Kromm. The
two responses are so close together that in Figs. 2-5 they have to be shown by a single line.

Chou and Koenig [4] studied the Kromm problem but instead of solving it using
integral transforms they used the method of characteristics. When they compared their
results with those of Kromm they stated that the two sets of responses were identical.

A study by Miklowitz [5] is also similar to that of Kromm. He studied unloading waves
in a stretched elastic plate which are excited by a suddenly punched hole. It turns out that
this differs from Kromm's problem only in the time dependency of the input. Like Kromm,
Miklowitz solved the problem using an integral transform technique.

To get a feeling for the influence of the viscoelastic parameters on the response, we study
two different viscoelastic materials. They are chosen so that both materials have an instant­
aneous Poisson's ratio of 0·2308 (the equivalent of Kromm's) and so that the second visco­
elastic material is more viscous than the first. We have therefore, in effect, three comparable
viscoelastic materials starting with one that has no viscosity (elastic) and progressing with a
second and a third that are characterized by increasing viscosity. The viscoelastic responses
cannot be appraised in light of any other published results but they satisfy what one would
expect by intuition. We see by examining Figs. 2-5 that the more viscous the material the
less steep is the decay behind the wave front and for stations apart from the cylindrical
surface the smaller is the amplitude of the discontinuity at the front of the wave.

2. FORMULATION OF THE PROBLEM

Our study is of an infinite visoelastic body, initially at rest, enclosing an infinitely long
circular cylindrical hole of radius a. The surface of the hole is subjected to a uniform
pressure applied with an abrbitrary dependence on time.

The body is referred to a cylindrical coordinate system (r, (), z) within which the z axis
coincides with the axis of the hole. In the development, when it is appropriate, we use
indicial notation and all of the rules that apply to its use. Because of the axisymmetry of the
problem, we assume the displacement field in the form:

Ur = ur(r, t)

Ue == 0

Uz == 0;

(1)

then, using strain-displacement relations in a cylindrical coordinate system, we obtain

Brr = u"r

(2)
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The constitutive equations for a linear isotropic viscoelastic material are given by

P 1(D)tlj = Ql(D)elj

Pz(D)t"" = Qz(D)e"",

where
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(3)

ft,

P1(D) = I a"D";
"=0

ft2

Pz(D) = I c"D";
"=0

m,

Ql(D) = L b"D";
"=0

m2

Qz(D) = L d"D";
"=0

(4)

in which a", b", c'" d" are specified constants and D" = o"/ot". In equations (3~ tift 81j are the
components of the stress and strain deviators:

(5)

where ~ij is the Kroneker delta. If the initial values of tl'" 81ft t"", 8"" satisfy certain conditions
[6] the constitutive equations, equations (3~ can be written in terms of integral equations
as

(6)

where G1(t), Gz(t) are the shear and bulk relaxation functions respectively and x is the
position vector of the particle considered.

In our study we choose the standard solid as the viscoelastic model. The model is
attractive because of its simplicity and because it is quite adequate to model a material
for the time span response established in the study. It has been shown experimentally by
Kaya [7] in studies he conducted on high polymers, that the three parameters introduced
by the standard solid, (where each set models separately the bulk and deviatoric behavior
ofa material) are sufficient to reproduce the creep or relaxation behavior provided the time
interval over which the behaviors are to be modelled is not large.

It should be pointed out here that if a more sophisticated model is chosen the method
of characteristics can easily accommodate the increase in the number of material para­
meters. This will be demonstrated at the appropriate places in what follows.

For the standard solid the constitutive equations are simple. In differential equation
form they are given by equation (3) in which

1

P 1(D) = I a"D";
"=0

1

Pz(D) = I c"D";
"=0

1

Ql(D) = I b"D";
"=0

1

Qz(D) = I d,.D".
"=0

(7)



982 H. D. McNlVEN and Y. MBNGI

(8)

In integral form the constitutive equations are given by equations (6) in which the shear and
bulk moduli for the standard solid are

Gt(t) = GtF+(GlO-GlF)e-I/tl

Gz(t)= G2F+(GZO-GZF)e-I/t2 respectively.

In equations (8) the constants 't t, 'tz are relaxation times of shear and bulk moduli respect­
ively, and

GtF = Gt(oo); GtO = Gt(O);

G2F = Gz(00); Gzo = Gz(O).

The constants in equations (7) and (8) are related according to

(9)

bt bo at
Gto =-; GtF =-; 'tt =-;

at ao ao
(10)

d t . do Ct
Gzo =-; Gu =-; 'tz =-.

Ct Co Co

From equations (2) and the constitutive relations, we see that 'tjj == 0 for i '" j, and that

Pl(D)'t~r = tQl(D) (2Ur,r- ~r)

P t(D)'te9 = !Qt(D) (2 ~r- Ur•r )

PZ(D)'tklt = Qz(D)( ur•r+~).

(11)

Noting that 'trr , 't99 and 'tzz are functions of rand t only, the stress equation of motion
becomes

'trr -'t99 ..
'trrr + = PUr', r

In terms of stress deviators it can be written as

,1 't~r - 'tell ..
('t rr+yr",,) r+ = PUr'. r

(12)

(13)

The other two equations are satisfied identically.
For the condition on the cylindrical boundary of the hole we specify that only normal

pressure will exist and t~at it will be uniform. As the method of characteristics will accom­
modate any boundary condition that does not violate axisymmetry, this particular condi­
tion was chosen chiefly so that our results can be compared with what published results
there are. The body is taken to be initially at rest.
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The boundary condition takes the form

't'rr(a, t) = 't';r(a, t)+iru(a, t) = - f(t)H(t),

983

(14)

where H(t) is the usual Heaviside step function and f(t) is a prescribed, continuous function
of t.

The initial conditions are

ur(r, 0) = ur(r, 0) = o. (15)

The problem is now completely described. It is one of finding the four variables 't';"
't'9s' 't'1ck and Ur The variables are governed by equations (11) and (13) and are subject to the
boundary and initial conditions specified by equations (14) and (15) respectively.

3. SOLUTION OF mE PROBLEM

The choice here is to solve the problem using the method of characteristics. There are
many qualities of the problem that indicate this choice. There are two independent variables
and the governing differential equations are hyperbolic; both conditions that satisfy the
dictates of the method. Further, we will be dealing in the problem with wave fronts which
are particularly well handled by this method.

There is no need to review the method in detail here as it is covered in books such as the
one by Courant and Hilbert [8]. However, it makes the development more complete if we
explain that the method of characteristics is one of reducing the governing differential
equations to two much simpler forms, each of which is amenable to numerical analysis.
The first of these forms is called the canonical form and the second, the decay equation.
They are not applicable everywhere on the space-time plane. The canonical form of the
differential equations is valid only along characteristic lines and is used in the domain of
disturbed material. The decay equation is used along the boundary between disturbed and
undisturbed material, namely the wave front.

Each of the two forms is developed separately.

(a) Canonical form of the governing equations

We first transform the governing differential equations, equations (11) and (13), into a
set of first order differential equations. We do so by introducing new dependent variables

(16)

and take into account the relation

(17)

The five governing differential equations [three equations (1 n equation (13) and equation
(17)] take the form

(18)
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(Vi) = (Ul' .;,., .99> .lIt, u2)

0 -lip 0 -1/3p 0

2b1 0 0 0 0
3al

(Bij) = b1 0 0 0 0
3al

d1 0 0 0 0
Cl

-1 0 0 0 0

(.;r - .ge)
(19)

pr

(_ao., _~ u1 + 2bou _~ Ur)
al rr 3al r 3al 2 3a1 r

(Ci ) = ( aO I 2b 1 U1 2bo Ur bo )--·ee+--+---- U2
al 3al r 3al r 3a1

(CO d1 U1 do do Ur)--.k.t+- -+-U2+--
C1 C1 r C1 Cl r

0

(21)

Before we establish the canonical form of equations (181 we first establish the characteristic
lines along which they are valid. The equation, dependent on equation (18), governing the
characteristic lines is given by (see Ref. [8])

det(Bij - A(;ij) = 0, (20)

where A = dr/dt defines the characteristic lines on the (r- t) plane. The canonical forms of
the governing equations along the characteristic lines are (see Ref. [8])

I(i) dVm = l(i)C along dr = A(i)(i m = 1-5)
m dt m m dt ' ,

where the I~ is the left-hand eigenvector of the Bmp defined as

l(i)B = A(ill(i) (no sum on i' i m, P = 1-5)m mp p , , • (22)

In equation (221 A(i) is the ith eigenvalue of Bmp' which can be determined from equation (20).
For our problem they are

where

A(1) = c; A(2) = - c; A(3) = A(4) = A(5) = 0, (23)

(24)
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(24a)

For a general viscoelastic material the wave propagation velocity c is given by

2 2G1(O)+G2(O)
C = 3p .

Here, we note that All) = c and A(2
) = -c describe two families of straight lines with

slopes (c) and (-c) respectively on the (r-t) plane (see Fig. 1) and correspond to physical
characteristics which are the ones across which the vector Vi or its derivatives may suffer a
finite jump (physical considerations dictate that Ur will be continuous). On the other hand
A(3) = A(4) = A(S) = 0 describe the family of straight lines (r = const.) parallel to the taxis
on the (r-t) plane, which have physically no meaning, but along which the governing
equations can be put into canonical form.

~tE 2
~t 0 "- __

1

l~f~1

FIG. 1. Description of characteristic lines and wave front on the (i'-I) plane.

When we introduce the dimensionless quantities

_ r
r =-;

a

ct
1 =-;

a

_ u
r

U =-'r ,
a

_ Ct2
t2 =-,

a

(25)
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the canonical form of the governing equations, equation (21~ together with the continuity
condition

i = 3-6 along the lines

du, = 14, dt = U1 dt along r = const.

can be written in the form
dw.

(Xij d/ = (JijwJ.i,j = 1-6)

where

I h
. . dr

i = 1,2 a ong t e charactenstlcs dl = + 1, -1

dr
-=0
dl '

and

(wj ) = (it 1, i;" i 81h itt, it2, it,),

1 -1 0 1 0 0-"3"

1 1 0 1 0 0"3"

0 1 2 0 0 0

((Xij) =
0 0 1

G10 0 0
3G20

0 0 0 1
G20 0- pe2

0 0 0 0 0 1

(26)

(27)

(28)

(G20 -G10) 1

3pe2 r

(G20 -G IO) 1

3pe2 r

G10 1

pe2 f
GIO 1

pe2 f
G20 1

pe2 f

1

o

o

o

1

2

1

o

o

o

G10 1----
3G20 i 2

1

o

o

o

1 (G lF G1F)1
-3pe2 i

2
-i

1
f

~(~2F_~lF);
3pe 't"2 't"1 r

1 G1F 1
pe2 i 1 f

_1_(G IO G2F+ 2G1F)
3pe2 G20 i 2 i 1

1 GlF 1

pe2 i 2 f
o

(28)
(cont.)
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The canonical form of the governing equations. equation (2n is valid in that region of
the (f -1) plane within which the vector Vi is continuous.

The boundary and initial conditions, equations (14) and (15), in dimensionless form
become

where

i;.,(l, 1) + trkk(l, 1) = -g(l)H(l)

ur(f,O) = ul(f,O) = 0,

(29)

g(1) = f(t).
pc2

It is useful to note here that the method of characteristics can accommodate a more
sophisticated viscoelastic model at the expense of an increase of complexity. Suppose, for
example, that it were desirable to characterize the material by five parameters in both
dilatational and deviatoric behaviors rather than the three parameter models used in this
study. The canonical equations, equations (27~ would have the same form but i andj would
for this case represent the integers from one to eleven. This means that Wi would be an
eleven dimensional vector and the coefficients (Xii and Pij would each represent an eleven by
eleven array of elements.

As with the simpler mode~ all but two of the equations would be integrated along the
lines f = const.

(b) Decay equation along the wave front

We are seeking the response of an infinite viscoelastic body having infinitely long
cylindrical hole whose lateral surface is subjected to a uniform pressure. As the resulting
disturbance will move into the medium, the behaviour is best understood if it is described
using the notion of a wave front. The wave front is defined as the boundary between dis­
turbed and undisturbed regions of the medium. When the material at a point becomes
suddenly disturbed from an undisturbed state it can only do so if some derivative of the
displacement Ur suffers a finite jump at the point, that is Vi or its derivatives suffer a finite
jump. On the (f-1) plane, a wavefront can be represented by a line and, by definition, that
line will be a characteristic. This particular line corresponds to a cylindrical wave front
propagating into the medium with the velocity c. In our problem the initial conditions are
homogeneous which means that of a family of characteristic lines. it is the one emanating
from the point with the coordinates (1,0) on the (f-1) plane that will represent the wave
front. The order of the discontinuity of the characteristic line describing the wave front will
depend on the boundary condition at f = 1, specifically the dependence on time in the
neighborhood of 1 = O.

The line (f-l) = 1describing the wave front S is shown in Fig. 1. In the boundary
condition, the first of equations (29~ g(1) is an arbitrary function of 1. If g(0) =F 0, we will
show shortly that along S the vector Vi will suffer a finite jump. Since discontinuities of Vi

are not permitted with the use of the canonical form of the governing equations, it will be
necessary to develop decay equations that are valid along the line S.

These are developed from equation (27) by recognizing that even though the canonical
equations are not valid along the characteristic across which the Vi suffer finite jumps, they
are valid on each side of it.

We begin by using equations (27) with the choice of i = 1, which is the canonical form
of the governing equations along (df/d1) = 1. We write this equation on both sides of the
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characteristic line and take the difference. We obtain

(30)

We enclose a function by square brackets to denote the finite jump of the function across a
characteristic line, i.e. [f] designates the finite jump ofthe function (f) across a characteristic
line r = ;:(l).

On the other hand, from the continuity conditions we have

[Ur ] = o. (31)

Here we use Hadamard's lemma which states that [f] = 0 along r = ;:(1) implies that
[f,,]+(dr/d1)[f,;] = O. If we apply the lemma to equation (31) along (dr/d1) = 1 we obtain

dr
[Ul] = - [U2] along d1 = 1. (32)

From the constitutive relations, equations (6), we also have

[-f] G10 [ f] 2G10 [- ]
t rr = pe2 6rr = 3pc2 U2

_, G10 , -GlO _
[tllll] = -2 [61111] = -32 [U2] (33)

pc pc

_ G
20

G
20

_

[tldt] = -2 [6tJ = -2 [U2]'
pc pc

When, using equations (28~ we expand equation (30) and employ equations (31H33)
we obtain decay equations in the form

(34)

(35)

(36)

where

m = 6
1

2 {2(G lO -G1F) ! +(G20 -GU )! }.
pc t 1 t2

The solution of equation (34) is

[u2 ] = A(~r/2e- m
; along :; = 1.

where A is a constant to be determined from boundary and initial conditions.
The decay represented by equation (36) can apply to any viscoelastic material with the

difference that for the general case

m = -a(2G1(0)+ G2(0)) (300)
2c 2G1(0)+G2(0)'

We return to our problem. Since g(l) is a continuous function of 1 for 1 > 0, using
equation (36) it can be shown that in the disturbed region behind the wave front S, the Vi
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are continuous so that the canonical form of the equations, equation (2n are appropriate.
On the other hand along the wave front S, the constant A in the decay equation, equation
(36~ will not be zero [implying the Vi suffer finite jumps across S ifg(0) #: 0]. The constant
A can be obtained from the behavior ofthe boundary condition and initial conditions in the
neighborhood ofthe point with coordinates (1, 0) on the (r-l) plane. Using boundary and
initial conditions equations (29~ and noting that [u,] = 0 everywhere on the (r-l) plane
one obtains

[u2(1,0)] = - g(0).

Using equation (37~ the constant in equation (36) can be determined. It is

A = -elllg(O).

Accordingly, the decay equation becomes

(
1) 1/2 _

[il2 ] = - g(O) f e-111('- 1) along S.

(37)

(38)

(39)

Knowing the jump in U2' the jumps U1' i;,., ioo and i u along S can be determined from
equations (32) and (33).

4. NUMERICAL ANALYSIS

We seek (Wi) = (U1' i;,., iBe. ilk> U2' u,) at a station r and a time l, and having these, we can
calculate the strains and stresses. We refer to Fig. 1, which shows the (r -l) plane. On this
plane, the line S: r-1 = l divides the space-time domain into two parts, the domain D1

representing undisturbed particles and D2 representing particles of the body which are in
motion. The part D2, which is the part that interests us, is subdivided by means of a grid.
The grid shown by fine solid lines is formed by two sets of parallel lines. The first set (r-l =
const.) is parallel to the line S, and the second set (r+l = const.) has equal but opposite
slopes. Each diamond shaped element has diagonals measuring 211r and 211l.

To establish Wi in the region D2, we start at the origin and along S where it is known from
the decay equations, and fan out into region element by element. To be more explicit, we
know Wi at the points 0 and 1 in Fig. 1, and using a technique to be explained shortly, we
find Wi at the point 2. Having Wi at the points 1-3, we use the same technique to find Wi at the
point 4, and so forth.

In explaining the technique we refer to element M shown in Fig. 1. Wi is known at
points AI> A2 and A 3 and is sought at the point A. As there are six unknowns, we need six
equations to establish them.

The boundary lines AA1 and AA2 are the characteristic lines r-l = const., and r+ l =
const. respectively. Two of the six equations come from using the canonical form of the
governing equations along the characteristic lines AA 1 and AA2 in the element converging
on A [equation (27) with i = 1,2].

The four remaining equations are the canonical forms of the governing equations along
the line AA3 , r = const. [equation (27) with i = 3~]. The six components of Wi are found at
A by solving the six equations by the method of finite differences.
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For the element L adjacent to the line l' = 1, the procedure is the same except that the
equation along the line 1'-1 = const. must be replaced by the boundary condition at l' = 1,
namely the first of equations (29):

i;,(A)+t-ru(A) = - g(A). (40)

5. NUMERICAL RESULTS

Our choice is to calculate and exhibit three quantities; the radial stress 1",,, the tangential
stress 1"96 and the radial velocity u.. Each quantity is found at two stations; the first at r = a,
the edge of the cylindrical hole, and the second at r = 2·5a. We use f(t) = Po for the time
dependency of the input though with the method ofcharacteristics any function could have
been chosen. This particular choice enables us to compare our results, for the elastic case,
with those due to Kromm [2, 3]. This comparison is possible because the theory of visco­
elasticity contains the theory of elasticity as a special case.

Kromm studied the response in an infinite elastic sheet to a uniform input applied to the
surface ofa circular hole. One of his inputs was a pressure having a step distribution in time
and it is the response due to this input with which we compare ours. The comparison is
additionally significant because Kromm established his response using integral transforms.

In establishing a response to compare to that of Kromm we first recognized that his
problem was one of generalized plane stress and ours is plane strain. However it is well
known that the solution of one problem can be taken as the solution of the other provided
the elastic constants are adjusted. Kromm used a Poisson's ratio of Q.30 from which we
found the "equivalent" Poisson's ratio for plane strain to be Q.2308. Using this value we
found the responses at the same stations as Kromm and compared the two sets of results.
The results are almost identical. They are so close that they are indistinguishable from one
another in Fig. 2-5.

Our main interest however, is in the response in viscoelastic bodies. We choose two
separate viscoelastic materials to show the influence of the viscosity on the response. The
second of the two materials is the more viscous. As each material is modeled by the standard

-1.6r-----r-------,r-------,------,--...,

-1.2

-- ELASTIC SOLUTION (1/ =0.23081
- - VISCOELASTIC SOLUTION (MATERIAL 1)
_.- VISCOELASTIC SOLUTION (MATERIAL 21

r= 1

-0.8
0..0
.......

L.

f'>L. -0.4

~-===._..-._.-.-
-~sTATic -s'(;L:u-iioN :-=-...- - ..............-...:=:=..~

Or--------L------------------~

0.4 !:- --:!:- --':-- ----:!:-- ----:!:--_..J
o 2 4 t 6 8

FIG. 2. Radial stress for the stations r = a and r = 2·5a.
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r =2.5

-Pot;:;:;.
t

,STATIC SOLUTION _------==.=:=...-:-.=. _1.________ _~----~--e.- _
/' -._.

r=' /~...........
,/

./

OH!-'-----r-~......,=---------------__l

1.2

1.6 __ ELASTIC SOLUTION (V =0.2308)
-- VISCOELASTIC SOLUTION (MATERIAL 1)
_.- VISCOELASTIC SOLUTION (MATERIAL 2)

-0.4~----~----....L..----......L------I.--..J
o 2 4 t 6 8

FIG. 3. Tangential stress for the stations r = a and r = 2·5a.

(41)

solid each is identified by the quantities listed below. The quantities are chosen so that both
materials have the instantaneous Poisson's ratio of 0·2308 which will mean that the elastic
response we have found can be considered the limiting case for the three responses.

(a) Material one

G1F = 0.40' i 1 = 3.0;
G10 '

~20 = 2.28571 ; G2F = 1·142855' i 2 = 5·0,
10 GlO '

(b) Material two

G1F = 0.20' i 1 = 1·50;
G10 '

(42)

G20 = 2.28571 . G2F = 0·5714275' i 2 = 2·50.
G10 ' G10 '

1.6,-----,-----,-----,------,---,
-- ELASTIC SOLUTION (11'0.2308)
- - VISCOELASTIC SOLUTION (MATERIAL 1)

1.2 --- VISCOELASTIC SOLUTION (MATERIAL 2)

r = 1
'~""""'-'-"
~, ''''''''-'...... -

' ,' :._._._._._._._._._._.

-------------
or----\"::=:-=~::_==================i

a..0
.......
u
~ 0.4

.:5" 0.8

-0.4 !:---_---:!:- ~------:~------l:---..J

o 2 4 t 6 8

FIG. 4. Radial velocity for the station r = a.
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1.6r-----,-------.--------,--------,-----,
-- ELASTIC SOLUTION (v =0.2308)
- - VISCOELASTIC SOLUTION (MATERIAL 1)

1.2 _.- VISCOELASTIC SOLUTION (MATERIAL 2)

i ·rr la, t)
-Pa ,==-

t

r = 2.5

0_._.­
.-.-._~_.--- --------

°1----J'----~==~~~--==:==============9

.5 0.8

;;.0
"­u
~0.4

- 0.4 !:- ---:~---~~---___:'--------'::__---J
o 2 4 t 6 8

FIG. 5. Radial velocity for. the station r = 2·5a.

We have then, in effect, three comparable viscoelastic materials starting with one having
no viscosity (elastic) and progressing with a second and a third characterized by increasing
viscosity. The influence of viscosity is revealed in Figs. 2-5. The figures show that the more
viscous the material the less steep is the decay behind the wave front and for stations apart
from the cylindrical surface of the hole the smaller is the amplitude of the discontinuity at
the front of the wave.
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A6cTpaJcT-I'IccnCAOBaHHC ll:acaeTCJI JIHHcJlHoro BJI31l:oynpyroro 6ecJcoHC'lHOrO TCJIa, c ~lIH,lQ)lI'Iec:IBM

OTBCpcTHCM xpyroro CC'ICHHJI. npeAMCTOM HccnC,D;OBaHKJI JIBJIJICTCJI ODpeACJICHHC noBC~ TCJIa DOA
BlIHlIHHCM DOCTOfIHBoro AIlBllCHKJI, npHJIOlKCHHOfO X CTCHJCC OTJICPCTIUI, DpoH3BOm.HO 38BHClIIIlCfO CYr
BPCMCHH. l'lCOOJD03YCTCJI MCTOA xaparrepJICTIUC AJIJI peJDCHKJI, a DOBC,llCHHC HUOAHTCll B 1I1'yx
CYrACllbHIiIX MecTllX, AJIJI TpeX pa3HIiIX BJI31l:0YDPyrHx MaTCPHaJIOB. KorAIl :nH DOBCACHKJI MOJmO cpaBJIIIT&
C TaJCHMH lKC ,D;pyrHMH, OHH noU3lillllUOTClI npaBIIJIItHIiIMH, HO ll:orAIl HC MOJmO HX cpaBJIIIT&, OHH
oxa31i1BaIOTCJlll:a'lCCTBCHHO TllJCHMH, xcnoplilMH OllCHAaJIOCI> 61i1 HHTYJITHBHO.


